Well-posedness of the Muskat problem in subcritical L p -Sobolev spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Well-posedness of the Muskat problem with H2 initial data

Article history: Received 30 December 2014 Accepted 13 August 2015 Available online xxxx Communicated by Charles Fefferman MSC: 35R35 35Q35 35S10 76B03

متن کامل

On the Well Posedness of the Modified Korteweg-de Vries Equation in Weighted Sobolev Spaces

We study local and global well posedness of the k-generalized Korteweg-de Vries equation in weighted Sobolev spaces Hs(R) ∩ L2(|x|2rdx).

متن کامل

n - Widths of Sobolev Spaces in L p

Let W~ r) = {f:fecr-J[O, l ] , f (rl) abs. cont., Ilftr)IIp < oo}, and set B~) = {f: f~ ~ ' ) , I[/~r)llp ~ 1}. We find the exact Kolmogorov, Gerfand, linear, and Bernstein n-widths of B~p r) in L p for all pE(l, oo). For the Kolmogorov n-width we show that for n _> r there exists an optimal subspace of splines of degree r 1 with n r fixed simple knots depending on p,

متن کامل

Global Well-posedness for Kdv in Sobolev Spaces of Negative Index

The initial value problem for the Korteweg-deVries equation on the line is shown to be globally well-posed for rough data. In particular, we show global well-posedness for initial data in H(R) for −3/10 < s.

متن کامل

Well-posedness for a Higher Order Nonlinear Schrödinger Equation in Sobolev Spaces of Negative Indices

We prove that, the initial value problem associated to ∂tu+ iα∂ 2 x u+ β∂ x u+ iγ|u|u = 0, x, t ∈ R, is locally well-posed in Hs for s > −1/4.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Applied Mathematics

سال: 2021

ISSN: 0956-7925,1469-4425

DOI: 10.1017/s0956792520000480